

SES-026872 Advising New Vineyards

Dr. Sarah Lowder sarah.lowder@uga.edu UGA Extension Viticulture Specialist and Asst. Professor of Horticulture sarah.lowder@uga.edu

Every vine can take only so much...

Site selection

For vineyard – Possibly the <u>most</u> <u>important decision</u> a grower can make

- Choosing a good site can
 - Reduce crop loss
 - Make a good grape variety better!
 - (and) Make an okay grape variety better!

For winery –

Where people will visit

Cultivars

- Choosing:
 - V. vinifera
 - Hybrids
 - American bunch grapes
 - Muscadines

Wine? Table? Commercial? Home?

Depending on vineyard goals, Georgia is not a cheap place to have a vineyard

Vineyard Site Score Sheet

Accessibility	
Elevation	
Direction of slope	
Degree of slope	
Soil characteristics	
Water	
Wildlife	
Adjacent Agricultural Operations	
Suitability for desired vineyard goals	

Cultivar/Variety Selection

- Your (potential) site
 - Do you already have a site? What CAN you grow there?
 - What are the stressors?
- Business goals
 - What do you want to grow? Making wine? Selling grapes – to whom?
- Effort
 - How much labor are you willing to put in long term? Do you know where/how you can get help?

Site selection - Climate

Human Factors

Vineyard decisions

- Variety/rootstock
- Type of trellis & training system
- Pruning
- Irrigation
- Fertilization
- Pest control
- Floor management
- Time of harvest

Winery decisions

- Time of harvest
- Use of oak
- Cultured or wild yeast
- Length of maceration
- Time in contact with lees
- Fermentation temperature
- Filtration

Levels of site suitability and management

Vineyard Requirements

- Minimum <u>winter</u> temperature
- Season length (frost window)
- Heat summation growing season
- <u>Manageable</u> disease
- Topography not too steep
- Soils good drainage

Minimum <u>winter</u> temperatures

In GA, when thinking about winter temps, we are talking about:

- > # of chilling hours in the winter = > synchronization of phenological stages
- Fluctuating winter temperatures are a concern (vine acclimation and deacclimation)
- In Vinifera/bunch grapes, first chilling concern are the buds
- Muscadines, more likely to see damage to permanent vine structure

Dormant Grapevines

1-year old wood that will bear the buds for next year's crop

Bud cold hardiness

Prosser, Washington

Mills et al. 2006

Figure 5 Bud cold hardiness (based on LTE_{50}) of eight *V. vinifera* cultivars from November 2004 through March 2005 in Prosser, WA. Red winegrape cultivars (**A**), white winegrape cultivars (**B**), and daily maximum and minimum temperature (**C**). Asterisk (*) indicates dates at which differences in LTE_{50} were significant at $p \le 0.05$ (n = 4).

Vine Cold Hardiness

- Avoiding winter damage by:
 - Site selection
 - Cultivar selection
- At greater risk when:
 - vines are stressed
 - recent warm weather

	Minimum winter temperature*
Vitis vinifera	-5°F
American Vitis species	-20°F (or lower)
Interspecific hybrids	-10 to -30 °F (or lower)
Muscadines	0°F (????)

*Approximate -> depends on acclimatation

C C	old hardiness lass	Range of critical temperatures*	Species	Example of varieties
V	ery tender	5 to -5°F	Most <i>Vitis</i> rotundifolia	Carlos, Cowart, Scuppernong, Supreme
			Most <i>Vitis vinifera</i>	Chenin blanc, Merlot, Semillon, Syrah (Shiraz), Sauvignon blanc, Zinfandel
	ender	0 to -8°F	Most <i>Vitis vinifera</i>	Chardonnay, Cabernet Sauvignon, Gewurztraminer, Pinot gris, Pinot noir, Sangiovese, Viognier
	loderately tender	-5 to -10°F	Some <i>Vitis vinifera</i> Some hybrids	White Riesling, Cabernet franc, Lemberger, Gamay noir, Chambourcin
	loderately hardy	-10 to -15°F	Most hybrids	Cayuga White, Chardonel, Traminette,
				Norton, Seyval blanc, Vignoles
Η	lardy	-15 to -20°F	Most Vitis labrusca	Catawba, Concord, Delaware, Niagara
V	ery hardy	-20 to -30°F	Some hybrids	Frontenac, Foch, LaCrescent

Dami, I. Understanding & Preventing Freeze Damage, 2007

Structure of a spur

Pruning to 2 buds per spur, spurs 3-8 inches apart

When pruning is done later in the season (February), can adjust for # of dead buds

<u>ENSION</u>

Structure of a spur

UNIVERSITY OF GEORGIA EXTENSION

SKINKIS

Structure of a spur

UNIVERSITY OF GEORGIA EXTENSION

SKINKI

<u>Pencil</u> rule

- Canes kept should be:
- AT LEAST as thick as a pencil
- LESS thick than a quarter (bull cane)

Winter damage \neq Frost Damage

• Different vine susceptibility AND prevention/protection methods

Damage Type	State of Vine	Timing	What is damaged?
Winter cold damage	Dormant	Winter	Buds, phloem
Frost Damage	Growing	Spring/Fall	Leaves, shoots, flowers/fruit

Spring frost events

- Damage
 - Early Spring: emerging buds
 - Spring: young tissues (leaves, shoot tips, flowers)

Primary shoot - shoot that began growing from bud in spring. Damaged by frost.

Secondary shoot - shoot begins to grow since loss of primary.

Cane - shoot that grew last year and maintained at pruning.

Node contains 1 compound bud

Image: Patty Skinkis

Fall frost events

Damage potential:

- Canopy
- Fruit
- Buds for next year

Impacts:

- Fruit ripening
- Carbohydrate and nutrients going into storage reserves

We see these issues more often when there is also high disease levels in the canopy

UGA Weather Network

29.2

28.9

30.1

29

28.8

31.1

31

31.5

30.2 29.8

Determining Probability of FFDs

- Use historical climate data (long-term)
- Use temperatures ~ 30°F

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

Oct 22

Oct 26

Oct 23

Oct 17

Oct 05

Oct 24

Nov 01

Oct 03

Oct 05

Oct 18

Oct 19

UGA Weather Network: <u>Georgiaweather.net</u>

Vineyard site selection for frost protection

Better

• Choose convex, sloped land

Bad

• Land higher than surroundings

Best

Vineyard Site Selection

- Humid climate, often vines have more water than they need
- Causes excess canopy growth (high vigor)
- Vines need good water drainage! wet feet = bad
- Air flow can help dry canopy (reducing disease pressure)

Airlwaterflow

Vineyard site selection

- Air movement (windy = good*)
- Beware the frost pockets

Vineyard site selection

• Put later bud breaking varieties lower on hill

winery

Vineyard site selection- Topography

Important factors for sunlight interception and cold air drainage

- Aspect = direction (N, S, E, W)
 - Solar radiation, heat accumulation
 - South slopes will increase heat units (unnecess
 - East slopes dry off earlier in day
- **Slope** = Percent grade
 - Machinery operation/working conditions
 - Water runoff and soil erosion
 - Water, air drainage
 - No steeper than 15%

Elevation – relative and absolute

• **GA** – 1800' or higher for Pierce's Disease

Vineyard site selection Aspect (direction of slope)

- Areas with cooler climates:
 - Choose south to southwest facing slopes
 - Allow mx. Heat accumulation to grow & ripen grapes
- Areas with warm or hot summers and cold winters:
 - Choose north to northeastern facing slopes
 - Vines stay dormant longer, less potential for winter injury & spring frosts
- Areas with high disease pressure:
 - Choose east facing
 - for morning sun to dry canopy faster

Vineyard Site Development

- Cropping history
- Soil test:
 - pH, P, K, Mg
- Eliminate noxious weeds
- Address shade issues
- Eliminate wet areas in field
- Remove barriers to good air drainage
- Establish a good ground cover on vineyard floor (though there can be lots of variability here...)

Previous land use

- How was the land previously used?
 - (other crops? Forest?)
- What is in the surrounding crops/plant life?
- Land-use and zoning considerations?
- Proximity to urban areas

Soils for Vineyards

- Soil pH 6.0 to 6.5
- Deep, Minimum rooting depth 30 to 36 in.
- Low to moderate fertility
- Organic matter content < 3.5%
- Good water supplying capacity,

but <u>well-drained</u>, both internally and surface

Adjusting the soil is very hard once the vines are in the ground

A little lime may be needed...

- Many soil testing recommendations for lime (such as UGAs AESL reports) provide recommendations for <u>6 inches of soil</u> depth.
- AKA, you'll need to probably at least triple the recommendation to get to the depth needed in vineyards

Organic Matter

- Why less than 3.5 % O.M?
 - 30 to 60 pounds of actual nitrogen are released per 1% organic matter per year due to mineralization
 - At 3.5% O.M., between 105 and 210# actual N may be released
 - $\sim \frac{1}{2}$ of this is available to vines
 - This exceeds the per acre recommended rate of N for bunch grapes resulting in excess vegetative growth delayed fruit ripening & poor fruit quality

Soil physical properties influence root development

- Vertical root distribution determined by:
 - Soil texture
 - Stoniness
 - Depth of water table
 - Depth of restrictive barrier
 - Genetics
- Fine textured soils (silt, clay) have
 - Higher water-holding capacities
 - Lower infiltration rates
 - Therefore, roots tend to be small & fine textured

Root System of Grapevines

- Depth
 - 60% of roots in the top 2 ft. of soil
 - Roots may extend down over 18 ft. in some soils
- Lateral spread
 - Possibly up to 30 ft.
 - ~ 15% of total biomass between 4 and 5 ft. from the trunk

Grapevine rooting patterns: A comprehensive analysis and review. D. Smart, E. Schwass, A. Lakso & L. Morano.Am. J. Enol. Vitic. 57(1): 89 – 104. 2006

Photo (Mike Trought; Wines & Vines): Grapevine root system

Water Drainage

- Vines will not tolerate "wet feet" during the growing season
- Eliminate wet areas in fields
 - Ditching
 - Tile drainage
 - Find another site

Soil Features Summary

Soil Feature	Importance	Desirable Value	Undesirable Value	Ability to Modify	
Internal water drainage	XXXXX	> 2"/hour	< 2"/hour	Ditching, tile drainage	
Water holding capacity	XXXX	> 0.15inch/inch of soil	< 0.1 inch/inch of soil	Increase organic matter leve	
Fertility	ХХХ	Low to medium	High fertility	Vine/rootstocks, spacing, ground cover competition	
Effective rooting depth	XXX	> 3 feet	< 1 ft.	Deep ripping, irrigation	
Texture (sand/silt/clay)	XXX	Loam, sandy loam, sandy clay loam	> 50% silt		
Soil pH	XXX	6.0 – 6.5 (6.5 for <i>vinifera</i>)	< 5.0 (Al toxicity)	Preplant <u>liming</u> to raise pH or acidification to lower pH	
Organic matter content	XX	1.0 – 3.0 %	> 3.5%	Vine spacing, ground covers	

Adjacent Agricultural Operations

- Need for buffer zones
 - An area separating a certified production area from an adjacent land area not maintained under organic management

 Potential for herbicide drift

Row Orientation

- Orientation = Cardinal Direction
- Less impactful in wider spacing and open canopies (non-VSP)

Practical considerations:

- Contour to prevent erosion
- Wind control
- Reduce risk of frost damage
- Safe operation of tractors and equipment
 - Terracing (running rows across the landscape) for slopes >30%

Row Orientation

Steep slopes – don't contour up and down the hill

(ideally <15%, definitely <30%) Willamette Valley, Oregon site

Row Spacing

Narrow row spacing = more linear feet of vines per acre

Calculation of linear ft/acre: 43,560 ft²/row spacing in ft West-facing slope aspect 10:30 AM in the morning

Narrow row spacing

Row Spacing

- Goal: to maximize area
- With enough space for equipment (at least 1.5 ft on each side of equipment) but also not too much space (so you can spray in both directions)
- Rule of thumb: No less than 1:1

 trellis height: row spacing
- In east coast US, generally 9-12 ft depending on trellis/training system, slope, vine vigor, soils, equipment

Keep full-sun vine requirement in mind!

West-facing slope aspect 10:30 AM in the morning

Vine Spacing in eastern US

- Often high vigor sites/varieties
- General vine spacing recommendations:
 - Vinifera –4-6 ft
 - Hybrids 6-10 ft
 - Muscadines 12-20 ft
 - Higher vigor vines can be spaced further apart, but bigger vines can be more stressed, lose productivity on ends
- Trellis System will change interrow spacing requirements
- Site water availability is important here!
 - More water = bigger vines = lower vine density
 - Less water = smaller vines = higher vine density
- Allow at least 24 35 ft. turning room at ends of rows

Vertical Shoot Positioned Trellis (**VSP**)

Vertical Shoot Positioned Trellis (**VSP**)

Most common or, at least, most quintessential vineyard trellis system

High-wire/ Hanging

- Low cost for establishment
- Mechanizable
- Accommodates vines with low, moderate, and high vigor
- Requires hedging to prevent shoots touching the ground
- Heavy (fruit laden) shoots can break

Phillip Brannen, University of Georgia Brett Blaauw, University of Georgia Mark Hoffmann, North Carolina State University Mizuho Nita, Virginia Tech Doug Pfeiffer, Virginia Tech

Megan McCoy, University of Georgi

Nanasa Munaread Free: Companyian at Goape Diseasa, Dondrea, en Maria Sacota dilatos. 2015. Estona W.K. Wei W.D. Gubra, and J.K. Uperoni. APS Press. Eliterat apteles: And Alan, University of Manazal Indreases phates Brock Brocks professor. Forticulare and Landscape Artholicam, Packat University Teeps Bia beelle phate. Natasia Weigle, Dask's Peat Control, Butenoco.

extension.uga.edu

Circular 1151 Reviewed April 2022 Published by the University of Georgia in cooperation with 2004 Values Status University, the U.S. Department of the Devision of Georgia Charles of April 2004 Content of Georgia Calley of April 2004 State Charles of the Status Content of Georgia Calley of April 2004 State Charles of the Status Content of Georgia Calley of April 2004 State Charles of the State Content of Georgia Calley of April 2004 State Charles of the State Content of Georgia Calley of April 2004 State Charles of the State Content of Georgia Calley of April 2004 State Charles of the State Content of Content of Content of April 2004 State Charles of the Determination of Content of Content of Content of Content of Content Determination of Content of Content of Content of Content of Content Determination of Content of Content of Content of Content of Content Determination of Content of Co

CULTURAL PRACTICES

ticultural practices optimize neyard health, profitability, and stainability and improve crop antity and quality. Like pest anagement, viticultural practices ould be implemented in a timely shion throughout the growing ason to maximize practice ficiency and benefit gain.

DORMANT

BUD SWELL

VITICULTURE MANAGEMENT 3 8 9 5 6 DORMANT BUD SWELL BUD BREAK PREBLOOM BLOOM FRUIT SET PEA-SIZED FRUIT BERRY TOUCH BUNCH CLOSURE VERAISON PREHARVEST HARVEST BB-SIZED FRUIT SAMPLING involves removing leaf tissues from CANE AND SPUR PRUNING SHOOT THINNING SAMPLING LEAF REMOVAL LEAF REMOVAL SCOUTING 2 HARVEST erably as early as it's possible to identif ed leaves at the tops of primar BIRD NETTING should placed

FRUIT SET*

drils strongly grab to wires and

POSTBLOOM*

BLOOM

CANOPY HEDGING

EARLY COVER SPRAYS

BERRY TOUCH AND

BUNCH CLOSURE

LATE COVER SPRAYS*

VERAISON

https://extension.uga.edu/publications/detail.html?number=C1151

SHOOT POSITIONING

PREBLOOM

FROST DAMAGE

implemented in an attempt to avoid frost inkey to vine tissues.

BUD BREAK AND

NEW SHOOT SPRAYS

PREHARVEST

POSTHARVEST*

Viticulture

Home --- Blog Production --- GA Regions --- Educational Resources --- Regional Programming ---

Discover the secrets to growing Georgia's finest grapes and unlock the path to a thriving vineyard in the heart of the South.

fîì

UNIVERSITY OF GEORGIA

EXTENSION

See the Growing Regions

https://viticulture.uga.edu/

Latest Posts

Mancozeb Update

Disease Management Webinar tomorrow!

Call for UGA Winegrower Internship Hosts!

allen .

Conversions Cheat Sheet:

- 1 acre = 43,560 square feet
 - ~0.4 hectares
- 1 hectare = 2.47 acres
- 1 foot = 0.3048 meters
- 1 meter = 39.37 inches (3.28 feet)

Vines per Acre/Hectare

Row spacing in feet/meters

		6	7	8	9	10	11	12
		1.83	2.13	2.44	2.74	3.02	3.35	3.66
	3	2420	2074	1815	1613	1452	1320	1210
	0.91	5977	5122	4483	3984	3586	3260	2988
	4	1815	1556	1361	1212	1089	990	908
	1.22	4483	3843	3361	2993	2689	2445	2242
	5	1452	1245	1089	968	871	792	726
	1.52	3586	3075	2689	2390	2151	1956	1793
	6	1210	1037	908	807	726	660	605
	1.83	2988	2656	2242	1993	1793	1630	1494
	7	1037	889	778	691	622	566	519
	2.13	2561	2195	1921	1706	1536	1398	1281
	8	908	778	681	605	545	495	454
	2.44	2242	1921	1682	1494	1346	1222	1121

Vine spacing in feet/meters