
Monitoring and Managing Insect Pests in Vineyards

Brett Blaauw 2025 Grape Spray Program Design Workshop

Common Grape Pests

- 1. Grape mealybugs
- 2. Grape flea beetle
- 3. Leafhoppers / sharpshooters
- 4. Grape phylloxera
- 5. Mites
- 6. Japanese beetles
- 7. Grape root borer
- 8. Spotted wing drosophila

Potential New Grape Pest

Spotted lanternfly

Monitoring and biology of pests

Dormant to Budbreak & Fruitset

Grape mealybug

Grape mealybugs

- Flat, white, and oval shaped
- Become active in spring
 - Multiple generations a year
 - Populations are highest on vigorous vines
 - Generally more severe on late-ripening varieties
- Mealybugs can vector grapevine leafroll virus
- Honeydew supports the growth of sooty mold
- Monitoring:
 - Check under bark on spurs or loose bark of prunings
 - Sooty mold and/or ants indicate mealybugs
 - Pheromone traps can monitor adult males

Budswell & Pre-bloom

Grape flea beetle

Grape flea beetle

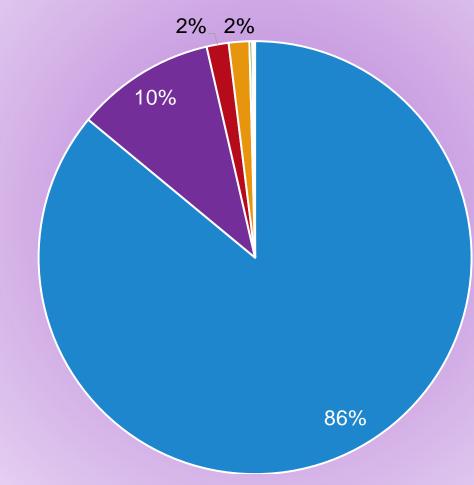
- Larvae are brown with black spots, 3/8 in
 - Larvae feed on grape leaves for 3-4 weeks
- Metallic blue-green beetle, ~1/5 in long
 - Adults feed on the unfolding leaves
 - Eat holes into the sides of buds and gouge out the contents as the buds swell
- Monitoring:
 - Active early in the spring on warm, sunny days
 - Shiny beetles easily spotted on buds and canes
 - Survey 25 vines at each of the five locations
 - Bud damage 4% or more → management needed

Budbreak & Berry Touch

Leafhoppers and Sharpshooters

Leafhoppers / sharpshooters (for Pierce's disease)

- Small insects with piercing-sucking mouthparts
 - Feed upon xylem or phloem tissue
- Potential to vector Pierce's disease of grapevines
 - Several culprits, including glassy-winged sharpshooter, blue sharpshooter, and versute sharpshooter
 - The causal agent is the bacterium Xylella fastidiosa


Leafhoppers / sharpshooters (for Pierce

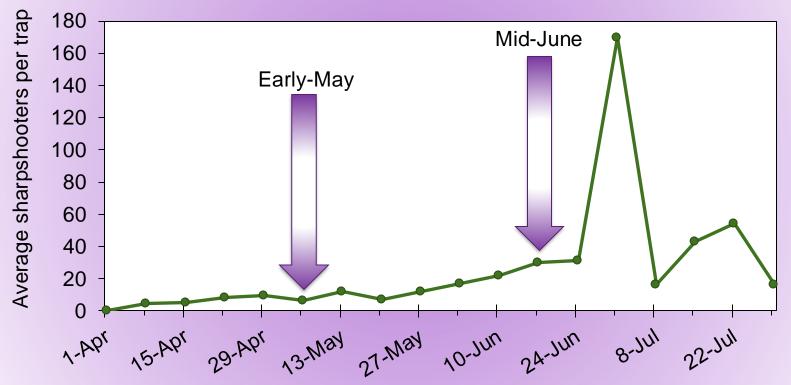
- Small insects with piercing-sucking mouthparts
 - Feed upon xylem or phloem tissue
- Potential to vector Pierce's disease of grapevines
 - Several culprits, including glassy-winged sharpshot blue sharpshooter, and versute sharpshooter
 - The causal agent is the bacterium Xylella fastidiosa
- Monitoring:
 - Begin at bud break
 - Use double-sided yellow sticky traps
 - Hang traps every 150 feet at canopy height
 - Check traps weekly

Sharpshooter/leafhopper community in GA

Versute

- sharpshooter
- Red-banded leafhopper
- Broad-headed sharpshooter
- Constricted leafhopper
- Yellowheaded leafhopper
- Lateral-lined sharpshooter
- Speckled sharpshooter
- Glassy-Winged Sharpshooters

Managing sharpshooters/leafhoppers


- Foliar insecticides: Apply at time of detection
- Large sharpshooters feed on the base rather than on the tips of canes
 - More likely to lead to infections
 - Less likely to be removed through pruning
- Neonicotinoids are most effective
 - Foliar can suppress populations
 - ★ Soil applied longer lasting, more effective

Leafhopper/Sharpshooter activity in North GA

Potential timing for chemigation

Sample date

Managing sharpshooters/leafhoppers

Prebloom and/or cover sprays

Trade Name	Active Ingredient; IRAC	Efficacy	
Sevin XLR Plus	carbaryl; 1A	Fair	
Malathion 8F	malathion; 1B	Fair	
Danitol 2.4 EC	fenpropathrin; 3	Fair	
Admire Pro	imidacloprid; 4A	Good Excellent (soil)	Only
Belay	clothianidin; 4A	Good Excellent (soil)	1-2 apps per
Venom	dinotefuran; 4A	Good Excellent (soil)	season

Pre-bloom

Grape phylloxera

Grape phylloxera

- Native to eastern US
- Tiny, pale yellow sap-sucking insects
- Feed on the leaves and roots
 - Create galls on leaves and roots
 - Stunting and/or death of European varieties
- The mobile crawler stage of phylloxera is susceptible to insecticide treatment
- Resistant American root stocks are key

Phylloxera resistant rootstocks

Rootstock	Riparia Gloire	101-14 Mgt.	3309 Couderc	1103 Paulsen	110R	5C	S04	420A
Parentage	V. riparia	V. Riparia x V. rupestris		V. Berlandieri x V. rupestris		V. Berlandieri x V. riparia		
Phylloxera resistance	Very high	High	High	High	High	High	High	High

Grape phylloxera monitoring

- Foliar phylloxera can cause galls on leaves of French-American hybrid cultivars
 - i.e., Vidal, Seyval, Chambourcin
- The crawler stage is susceptible to insecticide
- Scout for galls and crawlers prior to bloom
 - If found on susceptible cultivars \rightarrow
 - Apply insecticide if crawlers are active or 7-10 days post-bloom

Fruitset through Pre-harvest

Mites

Mites

- European red mite (ERM), Panonychus ulmi,
- Two-spotted spider mite (TSM), Tetranychus urticae,
- Can be a major pest within vineyards
 - Leaves have mild chlorotic spots and become bronzed at high populations
 - Severe infestations may result in defoliation
 - No direct fruit injury \rightarrow reduction in photosynthesis negatively affects fruit quality
 - May lead to reduced shoot growth and fruit bud in the following year

Mites

Two-spotted Spider Mite

European Red Mite

Monitoring for Mites

- During the dormant period:
 - Inspect vines for overwintering ERM eggs
 - Clusters of of tiny (less than 1/50 inch), red spheres
- Post-bloom:
 - Assess leaves for adult ERM and TSM mites
 - Use hand lens to inspect leaves
 - Tap branch and collect mites onto sheet of paper
- Chemical control should be considered only if mites exceed 10 ERM and/or 5 TSM per leaf

Berry Touch through Veraison

Japanese beetles

Japanese beetles

- Adults are shiny green with copper-colored elytra
 Overwinter as white, C-shaped grubs
- Can be severe pest of grape during the summer
 - Skeletonize leaves, rarely feeding on berries
 - Gregarious; present in great numbers on a few vines
 - Feeding concentrated in the upper part of the canopy
 - Feeding after veraison may impact fruit quality

Monitoring:

- No specific threshold
 - Manage at when 15% of the leaves are damaged
 - Or damage is found below top trellis wire
 - Young vines are most vulnerable

Bunch Closure

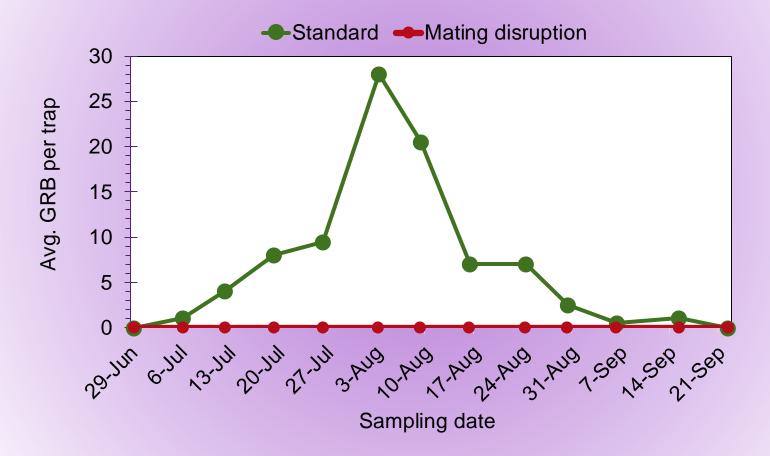
Grape root borer

Grape root borer

- Adult moths resemble wasps
- Each female lays an average of 300 eggs
 - Larvae drop to the ground and tunnel into roots
 - The life cycle takes two years to complete
 - Full-grown larvae are about 1 in long, white, and have brown heads
 - Adults emerge from soil in early summer
- Damage reduces the productivity of the vine
 - Roots may be hollowed
 - A lack of plant vigor is usually the first sign
 - Vines eventually die

Grape root borer monitoring

- Bucket trap and pheromone
 - 1 trap per 2 acres
 - Begin mid-June
 - Check traps weekly
- Check for pupal casings at vine base



GRB activity in North GA

Grape root borer management

Mid-May to Early-June

Trade Name	Active Ingredient; IRAC	Efficacy
Isomate GRB	pheromone; mating disruption	++++



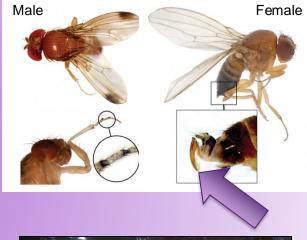
Note: new label is currently under EPA review

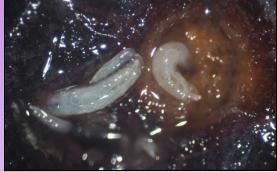
Entomopathogenic nematodes

- AKA beneficial nematodes or EPNs
- Heterorhabditis bacteriophora (Hb) or Steinernema feltiae (Sf)
 - Can reduce grape root borer infestations
 - As effective as chlorpyrifos (Williams et al., 2002)
- Commercially available
 - Reasonably priced
 - Can be easily applied
 - Potentially preventative and curative

EPNs for GRB management

- Several commercial products available
 - Follow label for mixing and application methods
 - 500,000 infective juveniles per vine
- Apply EPNs during GRB pupal stage
 - Approximately late May
 - Apply to base of vines
 - Backpack spray, herbicide sprayer, etc.
 - Remove any filters from nozzle
 - Water in with irrigation or 1/4 gallon of water/vine


Veraison to Harvest


Spotted-wing drosophila

Spotted Wing Drosophila

- Vinegar (fruit) fly
- Adults are 0.07-0.13 in, have red eyes
 - Males have a characteristic black spot on wings
 - Females have a saw-like, ovipositor
- Fruit becomes attractive at 15°Brix
 - Lay eggs in ripening fruit
 - Can transmit sour rot
 - Full life cycle as quick as 9 days
- Current management
 - Leaf pulling
 - Insecticides

Monitoring for SWD

- SWD are attracted to many volatiles ٠
 - Including vinegar, wine, yeast, and fruit
- Bait for traps ٠
 - 1 tbsp dry yeast, 4 tbsp white sugar, and 2 cups of water + unscented dish soap
 - Solution should be 1–2 inches in trap
 - Traps can be made from plastic containers with 6 to 12, 3/16-inch-diameter holes about 2/3 around
- Commercial lures and traps are available ٠
- Deploy traps 2 weeks before fruit begins to color
- Place traps on the north side of rows at fruit level ٠

Checking Fruit for Larvae

- Larvae may be in fruit before adults are caught in traps
 - Also indicates whether sprays are effective
- Collect intact, ripening grapes
 - Place fruit in a flat, dark pan or zip-lock bag
 - Add a salt solution
 (1/4 cup salt to 4 cups water)
 - Wait ~15 minutes for larvae to exit the fruit
 - Larvae found in recently ripened fruit are likely SWD
- Several other methods exist

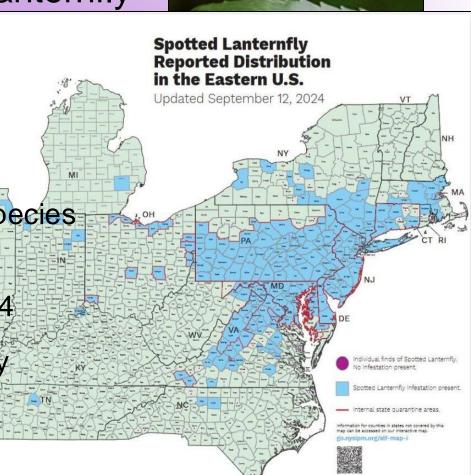
Effective spotted wing drosophila chemicals

Veraison and pre-harvest

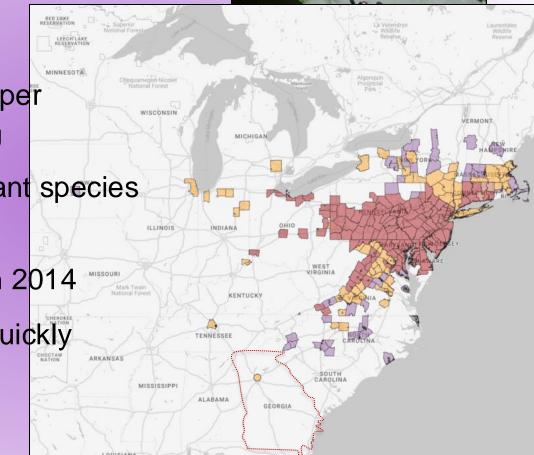
Trade Name	Active Ingredient; IRAC	Efficacy
Malathion 8F	malathion; 1B	Excellent
Imidan 70W	Phosmet; 1B	Good
Mustang Maxx	zeta-cypermethrin; 3	Excellent
Danitol 2.4 EC	fenpropathrin; 3	Good
Delegate	spinetoram; 5	Good
Entrust 80W (organic)	spinosad; 5	Good

Rotating active ingredients is highly recommended

Veraison to Harvest


Spotted lanternfly

Spotted lanternfly


- Lycorma delicatula
- Non-native, invasive leaf-hopper
 Relatively large → ~1 inch long
- Feeds on the sap of many plant species

 As nymphs and adults
- First found in Pennsylvania in 2014
- Their population has grown quickly
 - Spreading across the country
 - Found in Fulton county

Spotted lanternfly

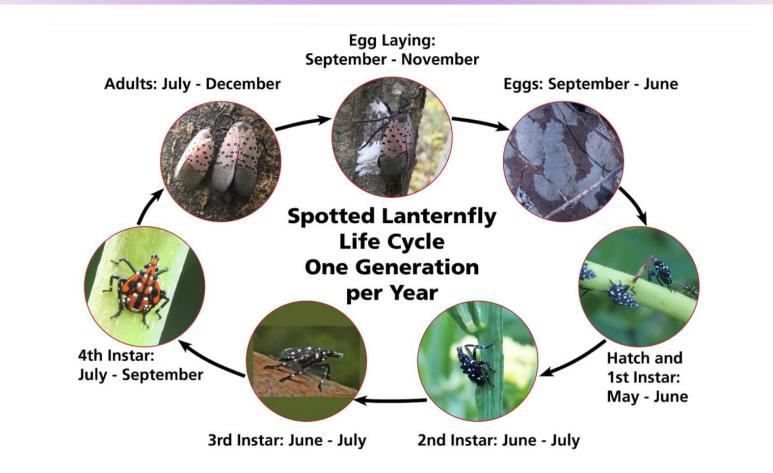
- Lycorma delicatula
- Non-native, invasive leaf-hopper
 Relatively large → ~1 inch long
- Feeds on the sap of many plant species
 As nymphs and adults
- First found in Pennsylvania in 2014
- Their population has grown quickly
 - Spreading across the country
 - Found in Fulton county in 2024

Spotted lanternfly hosts

- Broad host range of ornamental and woody plants
 - Roses
 - Black walnut
 - River birch
 - Willow
 - Sumac
 - Red/silver maple

Spotted lanternfly hosts

- Broad host range of ornamental and woody plants
 - Roses
 - Black walnut
 - River birch
 - Willow
 - Sumac
 - Red/silver maple
- Preferred hosts
 - Tree-of-heaven
 (Ailanthus altissima)
 - Grapes



Spotted lanternfly damage

- Feed on the phloem and xylem of plants \rightarrow can cause considerable stress
- Rarely associated with plant death, except:
 - Tree of heaven
 - Black walnut saplings
 - Grape vines
- Significant issue for grape vines:
 - Reduced crop yield
 - Reduced fruit quality
 - Potentially tainting the wine
- Honeydew can also lead to sooty mold growth
 - Unsightly
 - Can reduce photosynthetic ability of leaves
 - Has the potential to kill groundcover plants

Spotted lanternfly life cycle

When to monitor for spotted lanternfly

ноѕт		NYMPHS		ADULTS				
	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER		
Rose (cultivated, multiflora, etc.)								
Perennials								
Grape (wild and cultivated)								
Tree-of-heaven								
Black walnut, butternut								
River birch								
Willow								
Sumac								
Red/silver maple								

From Penn State

https://extension.psu.edu/spotted-lanternfly-management-guide

Management options

MANAGEMENT OPTIONS	JAN.	FEB.	MARCH	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
Don't move any life stage of SLF												
Scrape and destroy eggs												
Spray eggs with dormant rate of horticultural spray oil												
Use circle traps												
Contact insecticide applications (after hatch and avoid bloom)												
Systemic application of imidacloprid (after bloom, varies by method)												
Systemic application of dinotefuran (after bloom)												

From Penn State https://extension.psu.edu/spotted-lanternfly-management-guide

Insecticide options for Spotted lanternfly

Active Ingredient	Activity Against SLF	Residual Activity	Type of Activity
Beta-cyfluthrin	Excellent	Excellent	Contact
Bifenthrin	Excellent	Excellent	Contact
Carbaryl	Excellent	Poor	Contact
Zeta-cypermethrin	Excellent	Poor	Contact
Malathion	Excellent	Poor	Contact
Natural pyrethrins	Excellent	Poor	Contact
Neem oil	Good	Poor	Contact
Insecticidal soaps	Good	Poor	Contact
Horticultural spray oil	Good	Poor	Contact
Dinotefuran	Excellent	Excellent	Systemic
Imidacloprid	Good	Good	Systemic

Questions?