Development of IPM Strategies to Improve Management of Spotted Wing Drosophila and Sour Rot in Grapes

Brett Blaauw, Cain Hickey, and Phil Brannen 2019 Southern Winegrape Symposium Carrollton, GA

Spotted wing drosophila

- Vinegar (fruit) fly
- 0.07-0.13 in long with red eyes
 - Males have black spot wings
 - Females have a saw-like, ovipositor

Spotted wing drosophila

- Lay eggs in ripening fruit
 - Larvae feed and pupate within fruit
 - Full life cycle as quick as 8-10 days
- Grapes become attractive a 15°Brix
- Larvae may infest fruit at harvest
- Potential to exacerbate and spread microbes → rot

Monitoring for SWD

- SWD is attracted to many volatiles
 - Including vinegar, wine, yeast, and fruit
 - Bait for traps
 - 1 tbsp dry yeast, 4 tbsp white sugar, and
 2 cups of water + unscented dish soap
 - Solution should be 1–2 inches in trap
 - Traps can be made from plastic containers with 6 to 12, 3/16-inch-diameter holes about 2/3 around
 - Commercial lures and traps are available
 - Deploy traps at verasion
 - Place traps on the north side of rows at fruit level

Checking fruit for larvae

- Larvae may be present in fruit before adults are caught in traps
 - Also indicates whether sprays are effective
- Collect intact, ripening grapes
 - Place fruit in a flat, dark pan or zip-lock bag
 - Add a salt solution
 (1/4 cup salt to 4 cups water)
 - Wait ~15 minutes for larvae to exit the fruit
 - Larvae found in recently ripened fruit are likely to be SWD

Effective spotted wing drosophila management options

Trade Name	Active Ingredient; IRAC	Rate/acre	Efficacy
Malathion 8F	malathion; 1B	1.88 pt	++++
Imidan 70W	Phosmet; 1B	1.33-2.12 lb	+++
Mustang Maxx	zeta-cypermethrin; 3	2-4 oz	++++
Danitol 2.4 EC	fenpropathrin; 3	10.66 fl oz	+++
Delegate	spinetoram; 5	3-5 _{oz}	+++
Entrust 80W (organic)	spinosad; 5	1.25-2.5 oz	+++

Sour rot

- Pre-harvest cluster decay
 - Smells like vinegar
 - Due to a complex of *fungi*, *bacteria*, and *yeast*
 - Most susceptible after veraison
- Berry injury encourages infection
 - Hail or mechanical damage
 - Growth cracks
 - Birds
 - Other fungal infections
 - Insects!
- Chemical management is limited
- Management is based on reducing fruit injury

Botrytis bunch rot

- Gray mold, Botrytis cinerea
- Attacks dead, injured, or senescent tissues
- Berry injury can exacerbate infection
- The fungus thrives in high humidity
- Berries are most susceptible to infection after veraison
 - Berries turn brown or reddish
 - Fungal growth produces gray, velvety mycelium and spores

Concept

- Previous research from Cornell*
 - Oxidate 2.0 + Mustang Maxx \rightarrow decreased berry rot at harvest
- Combine pesticide treatments with with leaf pulling
 - Exposed clusters increase sunlight and airflow
 - Decreases the suitability of the vines for SWD and sour rot
 - Improved spray coverage

*Hall et al. 2018, American Journal of Enology and Viticulture

Objective

Evaluate the combination of **fruit-zone leaf removal**, **fruit fly control**, and **microbial management** on the reduction and incidence of sour rot.

Methods

- Two Chardonnay vineyards with VSP training systems
- Treatments were arranged in a strip-plot design, replicated six times
- Leaf removal was initiated post-fruit set on June 12,
 - Six basal-shoot leaves were removed from each of the leaf removal plots
- Pesticide treatments were applied on a 10 day cycle starting at 10°brix

Pesticide treatment

- Applied to only the "Pesticide" vines
- 10 day cycle

Application	Trade Name	Rate/acre
1	Mustang Maxx	4 oz
	Oxidate 2.0	64 fl oz
	Pristine	12.5 oz
2	Malathion 8F	1.88 pt
	Oxidate 2.0	64 fl oz
	Pristine	12.5 oz
3	Delegate	5 oz
	Oxidate 2.0	64 fl oz
	Pristine	12.5 oz

Cover sprays

- Applied to all vines in the project
- Same 10 day cycle
- Targeting downy mildew, powdery mildew, and rots

Application	Trade Name	Rate/acre
1	Elevate	16 oz
	Rally	5 oz
	Zampro	14 oz
2	Elevate	16 oz
	Rally	5 oz
	Revus	8 oz

June 12, 2018

July 21, 2018

August 21, 2018

Assessed rot prior to harvest

Sour rot

Botrytis

- 26 grape clusters per sub plot were evaluated for sour rot and Botrytis incidence and severity at each site
 - 156 clusters per treatment combination

SWD field abundance

SWD berry infestation

- Out of 48 clusters, only a single fruit fly larva was found
- Collected from a pesticide with no leaf removal treatment vine

Sour rot + Botrytis *incidence*

Note: only one site had measureable levels of sour rot and Botrytis

Sour rot + Botrytis severity

Note: only one site had measureable levels of sour rot and Botrytis

Summary

- Overall levels of sour rot and Botrytis in the Chardonnay were low
- Pesticide application significantly reduced rot incidence
 - Disease severity was also numerically lower
- Leaf removal decreased disease pressure
- No significant interaction between pesticides and the leaf pulling
 - Trend towards an additive impact for decreasing sour rot and Botrytis
- ★ The combination of leaf pulling and pesticides provided the lowest disease pressure
- ★ Encouraging first step in developing management guidelines to effectively management sour rot

Questions?

Thrips

- Small, 0.04 inch long, with distinctive feathery wing
- Two important species
 - Western flower thrips populations peak in spring
 - Coinciding with grape bloom
 - Grape thrips populations peak in early summer
 - Coincides with peak vine growth
 - As growth slows, the numbers of thrips decreases
- Damage includes:
 - Stunted shoots and leaf stippling/necrosis
 - Halo-spotting on the fruit due to egg laying
 - Scarring of berries with their feeding
- Generally not a problem in wine grapes

Potential thrips issues in Blanc du Bois

- Primarily West Georgia growers
- Other varieties?
 - Maybe Norton?
- Browning and dying of the blooms
 - Cladosporium and yeast are associated with the damage
 - Pathogens are likely secondary to thrips feeding

Management tips

- Thrips are attracted to flowers
 - Such as flowering weeds within vineyard
 - eg. Dandelions, morning glory, wood sorrel, and clover
- Weeds can provide resources for thrips
 - Build up populations on the weeds
 - Then move up into the grape flowers/berries
- Good weed control is essential
 - Particularly pre- grape bloom
 - Note, managing weeds during bloom may be too late

Chemical management

Trade Name	Active Ingredient; IRAC	Rate/acre	Efficacy
Aza-direct	azadirachtin ; UN	1-2 pt	++
PyGanic 1.4EC	pyrethrins; 3A	16-64 fl oz	++
Danitol 2.4 EC	fenpropathrin; 3A	10.33–21.22 fl oz	++
Venom	dinotefuran; 4A	1-3 oz	+++
Assail 30SG	acetamiprid; 4A	2.5 - 5.3 oz	++
Delegate	spinetoram; 5	3-5 oz	+++
Entrust 80W (organic)	spinosad; 5	1.25-2.5 oz	+++

*Most effective just prior to bloom

Thanks!

UGA Fruit Entomology Lab

Grower cooperators

- Funding
 - HATCH
 - Small Fruits Consortium

Questions?